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We characterize those open U in the sphere such that A(U) is complex-pervasive,
and those such that Re A(U) is real-pervasive. Pervasive means, roughly, that
the uniform closure on each proper closed subset of bdy U is the space of all
continuous functions (to C or R, as the case may be). � 2000 Academic Press

1. INTRODUCTION

Let X be a compact Hausdorff topological space and C(X, C) (respec-
tively, C(X, R)) the Banach algebra of all continuous complex-valued
(respectively, real-valued) functions on X endowed with the uniform norm.
A function space S on X is a closed subspace of C(X, C). We denote by
closC(E, C) S the closure in C(E, C) of the function space S, where E is a
closed subset of X. Similarly, we denote by closC(E, R) S the closure in
C(E, R) of the real subspace S of C(X, R).

Let Y be a closed subset of X. A function space S on X is said to be
complex pervasive on Y if closC(E, C) S=C(E, C) whenever E is a proper
non-empty closed subset of Y. Similarly, a real subspace S of C(X, R) is
said to be real pervasive on Y if closC(E, R) S=C(E, R) whenever E is a
proper non-empty closed subset of Y.

Let U be an open subset of the Riemann sphere C� and denote by bdy
U its topological boundary. In this paper we consider the case when
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X=C� , Y=bdy U and S coincides with the algebra A(U) of all complex-
valued functions continuous on C� and analytic on U, or with Re A(U), the
space of real parts of elements of A(U).

Obviously, if A(U) is complex pervasive on bdy U then Re A(U) is real
pervasive on bdy U. Easy examples such as a pair of disjoint discs show
that the converse is false.

A uniform algebra A, A/C(X, C) is said to be Dirichlet on X if Re A is
dense in C(X, R) [5]. Thus Re A(U) is real pervasive on bdy U if and only
if closC(E, R) A(U) is Dirichlet on E whenever E is a proper closed subset of
bdy U.

The term pervasive was introduced by Hoffman and Singer in 1960 [7].
They studied (complex) pervasive uniform algebras, motivated by the
relationship with maximal uniform algebras. For the algebras A(U), they
established that A(U) is complex pervasive on bdy U if U is connected and
N"U has positive area whenever N is a neighbourhood of a boundary
point of U. This condition is, as we shall see, far from necessary.

In 1971, Gamelin and Garnett characterized those U for which A(U) is
Dirichlet on bdy U [6]. This result is deep. It is necessary that each com-
ponent of U be simply-connected. Given that, the condition that A(U)
be Dirichlet is rather abstractly characterized by the pointwise bounded
density of A(U) in H�(U), and more concretely by a condition involving
continuous analytic capacity, :. This condition may be expressed as
follows. Let us say that the point a # C is a GG-point for U if

lim inf
r a 0

:(U(a, r)"U)
r

=0,

where U(a, r) denotes the open disc with center a and radius r.

The Gamelin�Garnett Theorem. Let U/C� be open, and suppose each
component of U is simply-connected. Then A(U) is Dirichlet on bdy U if and
only if there are no GG-points for U on bdy U.

Remark 1.1. Each GG-point on bdy U for U is an inner boundary
point of U, i.e. it is not on the boundary of any component of the comple-
ment of clos U.

Since real pervasiveness may be re-expressed in terms of Dirichlicity of
the algebras AE=closC(E, R) A(U), it is tempting to suppose that the
Gamelin�Garnett Theorem settles the matter. This is not so, since AE is
not an A(U) (nor is it one of the other algebras considered by Gamelin and
Garnett in their paper). However, it is probable that the result of Gamelin
and Garnett can be extended to all the so called T-invariant algebras (see
below), with suitable modification, and the algebras AE are T-invariant,
so that one expects that real pervasiveness may be expressed in term of

263PERVASIVE ALGEBRAS OF ANALYTIC FUNCTIONS



capacities associated to the AE 's. In fact, however, we shall see that a more
direct approach may be used, employing the Gamelin�Garnett Theorem as
it stands, and yielding a relatively simple and readily checked condition for
real pervasiveness.

The real pervasiveness of spaces of harmonic functions on Euclidean
spaces was studied by Netuka in [8]. He showed that if the open set
U/Rd is bounded and connected, and bdy U=bdy clos U, then the space
of functions continuous on clos U and harmonic on U is real pervasive on
bdy U. The present investigation was prompted by the question, whether,
when d=2, the space of harmonic functions could be replaced by the space
Re A(U) in this result. Realizing that the answer was yes, we proceeded to
investigate the necessity of the conditions on U, and eventually were led to
a complete characterization of the real pervasiveness of Re A(U) and of the
complex pervasiveness of A(U).

In Section 2, we consider the case when U has inessential boundary
points, i.e. points that are removable singularities for all elements of A(U)
(cf. Definition 2.1). This case reduces rather easily to classical facts.

In Section 3, we consider the case of connected U with essential boundary.
This is perhaps the most natural situation, and we show that in it A(U) is
always complex pervasive on bdy U.

In Section 4, we consider general U. We give a complete characterization
of complex pervasiveness in topological terms. This is not possible for real
pervasiveness. We give a complete characterization involving continuous
analytic capacity. This section is rather more technical and deeper than the
rest of the paper relying as it does not only on the result of Gamelin and
Garnett, but on Davie's deep result that characterizes the equality of two
closed T-invariant algebras in term of the respective capacities associated
to the algebras.

2. INESSENTIAL BOUNDARY POINTS

Given a compact Hausdorff topological space X, the dual space
C(X, C)* of C(X, C) will be identified with the space of complex Borel
regular measures on X and it will be denoted by M(X, C). Similarly
C(X, R)* will be identified with the space of real Borel regular measures on
X and denoted by M(X, R). We regard M(X, R) as a subset of M(X, C).
The (closed) support of a measure + # M(X, C) will be denoted by spt +.

For a set S/C(X, C) and a measure + # M(X, C) we write +=S, and
say + annihilates S, if � f d+=0 whenever f # S.

As remarked in [3], one readily sees that a subspace S/C(X, C) is
complex pervasive (respectively a subspace S # C(X, R) is real pervasive) if
and only if each nontrivial measure + # M(X, C) (respectively M(X, R))
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which annihilates S has spt +=X. Putting it in another way, S is complex
pervasive (respectively, real pervasive) if and only if the conditions,
+ # M(X, C) (respectively, M(X, R)), +=S and spt + % X imply that +=0.

Definition 2.1. Let a be a point in bdy U. We say that a is an
A(U)-inessential boundary point if there exists r>0 such that the inclusion
map

A(U _ U(a, r)) � A(U)

is surjective (and hence bijective), that is all functions in A(U) extend
analytically to U(a, r).

The A(U)-essential boundary of U is the set of points in bdy U which are
not A(U)-inessential boundary points. For the purposes of this paper, we
abbreviate A(U)-essential to essential.

If the essential boundary of U is empty, then A(U) consists only of
constant functions, and it is immediate that A(U) is complex pervasive on
bdy U if and only if Re A(U) is real pervasive on bdy U, i.e. if and only
if bdy U has at most two different points.

Let us define the regularization of U to be the set

U� =U _ [ p # bdy U : p is an essential boundary point of U].

We observe that if U� {C� (i.e. if the essential boundary of U is non-
empty) then C� "U� has positive continuous analytic capacity and hence bdy
U� has positive logarithmic capacity, so harmonic measures exist [2], [5].

Proposition 2.2. Let U/C� be open and suppose that the essential boundary
of U is nonempty. Let n be the number ( possibly infinite) of inessential
boundary points of U.

(i) If n�1 then A(U) is not complex pervasive on bdy U.

(ii) If n>1 then Re A(U) is not real pervasive on bdy U.

(iii) If n=1 then Re A(U) is real pervasive on bdy U if and only if
(a) A(U) is Dirichlet on the essential boundary of U, and
(b) the component in U� of the inessential boundary point of U has

boundary equal to the essential boundary of U.

Proof. (i) Suppose a is an inessential boundary point. Since A(U� ){
C(bdy U� , C), there is a non-trivial annihilating measure on bdy U"[a], so
A(U) is not complex pervasive.

(ii) Suppose that U has more than one inessential boundary point,
and let a and b be two different inessential boundary points of U. Consider
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for a the harmonic measure *a on bdy U� . Then $a&*a # M(bdy U, R),
where $a is the Dirac measure concentrated at a.

It is clear that $a&*a =Re A(U) and b � spt($a&*a) so Re A(U) is not
pervasive, as required.

(iii) Suppose U has only one inessential boundary point, say a.
Suppose Re A(U) is pervasive on bdy U but A(U) is not Dirichlet on

bdy U� . Then we can choose a nonzero measure + # M(bdy U� , R), +=Re A(U� )
with spt +/U� , contradicting the assumption that Re A(U) is pervasive.

If the boundary of the component in U� of a does not coincide with bdy
U� , then $a&*a =Re A(U) but spt($a&*a) % bdy U contradicting the fact
that Re A(U) is real pervasive on bdy U.

Conversely, suppose A(U) is Dirichlet on bdy U� and the component in
U� of a has boundary equal to bdy U� .

Consider a nontrivial real measure +=Re A(U) with spt + % bdy U.
Clearly spt +/3 bdy U� since A(U) is Dirichlet on bdy U� . So

+=:$a+&,

where 0{: # R and & # M(bdy U� , R). Then

| fd(:*a+&)=| f d+, \f # A(U),

so :*a+&=A(U) and therefore &=&:*a , since A(U) is Dirichlet on bdy U� .
The support of *a is the whole boundary of the component of a in U� , so

is the whole essential boundary. Hence spt +=bdy U, which is impossible.
Thus Re A(U) is real pervasive. K

In view of Proposition 2.2 and the Gamelin�Garnett Theorem, we
understand pervasiveness when there are inessential boundary points. So it
remains to consider the case when the entire boundary of U is essential.

3. THE CONNECTED, ESSENTIAL CASE

Let m be the Lebesgue measure on C. Let + be a complex measure with
compact support. The Cauchy transform of + is defined by

+̂(!)=
1
? |

d+(z)
!&z

.

266 NETUKA, O'FARRELL, AND SANABRIA-GARCI� A



We denote by R(K) the uniform closure on C� of the algebra of all
continuous functions on C� that are analytic near the compact set K. This
coincides, by Runge's Theorem, with the closure of the algebra of all func-
tions continuous on C� that coincide near K with some rational function.

The following theorem summarizes well-known results and we state it
without proof [1], [5].

Theorem 3.1. Let + be a complex measure with compact support in C� .
Then

(i) +̂ is defined m-almost everywhere, i.e. |+̂(z)|<� for almost
all z # C.

(ii) +̂ is holomorphic on C"spt +.

(iii) If +̂=0 m-almost everywhere, then +=0.

(iv) Let K/C� be a compact set. Then +̂ vanishes off K if and only
if +=R(K).

(v) If K/C is compact and +=m |K , where m |K stands for the restric-
tion of the Lebesgue measure to K, then +̂ is continuous.

Theorem 3.2. Let U be a connected open subset of C� , and let bdy U
be nonempty and essential. Then A(U) is complex pervasive on bdy U.
A fortiori, Re A(U) is real pervasive on bdy U.

Proof. Let + # M(bdy U, C), +=A(U) and suppose that spt +{bdy U.
We shall prove that +=0.

As +=A(U), it follows that +=R(clos U) so by (iv) of Theorem 3.1,
+̂=0 in C� "clos U.

Suppose now that a # bdy U"spt +, a{�. Choose r>0 sufficiently small
so that B(a, r) & spt +=<, where B(a, r) denotes the closed ball with
centre a and radius r. Let [rn]�

n&1 be a sequence of positive real numbers
so that rn<r and rn a 0 as n A �. By hypothesis, there exist compact sets
Kn /B(an , rn)"U having positive continuous analytic capacity :(Kn), so
there exists fn # A(C� "Kn), fn nonconstant and supC� | fn |=1. Multiply fn , if
need be, by an unimodular constant, so that we obtain fn( pn)=1 for some
pn # Kn and | fn |<1 off B(an , rn) by the maximum modulus principle. Note
that +̂ is analytic near B(a, r).

Next, +̂( pn)=0 because otherwise the measure & defined by

d&(z)=&
1
?

1
+̂( pn)

d+(z)
z& pn
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is a complex representing measure for pn on A(U) and

1= f k
n( pn)=| f k

n d& � 0 as k A +�

which is a contradiction.
Consequently, +̂(a)=0 by continuity. Since a is an essential boundary

point of U, it follows that B(a, r) _ bdy U is uncountable. The previous
argument shows that +̂=0 on B(a, r) & bdy U. By (ii) of Theorem 3.1, +̂ is
analytic on C"spt +, so +̂=0 on B(a, r), and therefore, since U is connected,
+̂=0 on U. Hence +̂=0 on C� "spt +.

Finally, let E/bdy U be compact. Let *=m |E . By (v) of Theorem 3.1,
*� is continuous and therefore *� # A(U), so by Fubini's Theorem

0=| *� d+=&| +̂ d*=|
E

*� dm,

so +̂=0 m-almost everywhere on bdy U.
As spt + # bdy U it follows then that +̂=0 m-almost everywhere on C� , so

by (iii) of Theorem 3.1, +=0. K

4. MULTIPLE COMPONENTS

We deal first with complex pervasiveness.

Theorem 4.1. Suppose U is a ( possibly disconnected ) proper open subset
of C� without inessential boundary points. Then A(U) is complex pervasive on
bdy U if and only if bdy Ui=bdy U for each component Ui of U.

Proof. The ``if '' direction is proved by essentially the same argument as
that for Theorem 3.2.

To see the ``only if '' direction, suppose U has a component Ui with
bdy Ui{bdy U. We may choose a nonzero annihilating measure + for
A(Ui ) supported on bdy Ui , which is a proper subset of bdy U. Then +
annihilates A(U), and this shows that A(U) is not complex pervasive on
bdy U. K

Remark 4.2. The vagaries of plane topology allow up to an infinite
number of connected open sets to share a common boundary.

Moving on to real pervasiveness, we note first:

Theorem 4.3. Suppose U/C� is open and proper, with no inessential
boundary points. Suppose U is not connected, and Re A(U) is real pervasive
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on bdy U. Then U has at most one component that is not simply-connected.
Furthermore, if U has such a component Uk , then bdy Uk=bdy U.

Remark 4.4. If U/C� is open, not connected, and several components
of U have boundary equal to bdy U, then all components of U are simply-
connected.

For suppose Ui and Uk are different components of U, and bdy Uk=
bdy U. Then Ui is one of the components of C� "clos Uk , which is the com-
plement of a continuum, and hence Ui is simply-connected.

Proof of Theorem 4.3. Suppose that Re A(U) is real pervasive and let
Ui be a component of U so that bdy Ui {bdy U.

Clearly, Re A(U)/Re A(Ui). Therefore the restriction of Re A(U) to
bdy Ui , Re A(U) |bdy Ui , is dense in C(bdy Ui , R). Hence A(Ui) is a Dirichlet
algebra on bdy Ui , so we can conclude that Ui is simply-connected [6].

Suppose next that U has at least two different components Uk , U l , that
are not simply-connected. Then from the foregoing bdy Uk=bdy Ul=bdy U.
Hence Uk and Ul are both components of C� "bdy U and by Remark 4.4,
both are simply connected, a contradiction. K

In the other direction we have

Theorem 4.5. Suppose U/C� is open and proper, with no inessential
boundary points. Suppose U has at least one component Uk so that bdy Uk=
bdy U. Then Re A(U) is real pervasive on bdy U.

The proof of this theorem involves the theory of T-invariant algebras.
We review the basic notation and ideas.

For a continuous function f # C(C, C), having compact support, we
define the Cauchy transform

Cf = fm@,

where m, as before, denotes the Lebesgue measure on C. We have

�
�z�

(Cf )= f

in the sense of distributions, so that (by Weyl's Lemma), Cf is holomorphic
off spt f.

For . # C �
cs (C, C) (the space of infinitely differentiable functions having

compact support) and f # C(C� , C), we define

T. f =.f &C \f
�.
�z� + .
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The linear operator T. (the Vitushkin localization operator) is continuous
from C(C� , C) into itself.

A subalgebra A/C(C� , C) is said to be T-invariant if

T. f # A, \f # A, \. # C �
cs (C, C).

We note that

�
�z�

T. f =.
�f
�z�

in the sense of distributions, so that T. f is holomorphic whenever f is
holomorphic and off spt .. This is the basis for the utility of T. in localiz-
ing singularities of analytic functions. It is obvious from this observation
that A(U) is a T-invariant algebra, whenever U/C� is open. So also is
O(E), the algebra of all functions continuous on C� and holomorphic near
E, whenever E/C� . Since T. is continuous on C(C� , C) it follows that
closC(C� , C) O(K) is also T-invariant. But this closure is, by Runge's Theorem,
equal to R(K), whenever K is compact.

Lemma 4.6. Let U/C� be open and K/C compact. Then

B=closC(C� , C)(A(U)+R(K))

is a T-invariant algebra.

Proof. It is obvious that A(U)+R(K) is T-invariant, and hence so is B.
Also

B=closC(C� , C)(A(U)+O(K)),

so it suffices to show that A(U)+O(K) is an algebra, i.e. to show that if
f1 , f2 # A(U)+O(K), then f1 f2 # A(U)+O(K).

Fix f1 , f2 # A(U)+O(K), and choose gi # A(U), hi # O(K) such that
fi= gi+hi , for i=1, 2. Then

f1 f2= g1g2+ g1h2+ g2h1+h1 h2 ,

so it suffices to show that g1h2 and g2h1 belong to A(U)+O(K).
So let g # A(U) and h # O(K). We need to show that gh # A(U)+O(K).

Choose an open set W#K, such that h is holomorphic on W.
Pick . # C �

cs (C, C) so that .=1 near K and .=0 off W. Then 1&.=0
near K and 1&.=1 off W.
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Let u=T.gh and v= gh&T.gh. Then

�u
�z�

=.g
�h
�z�

+.h
�g
�z�

�v
�z�

=(1&.) g
�h
�z�

+(1&.) h
�g
�z�

.

Thus u # A(U) and v # O(K), and gh=u+v, so we are done. K

It is possible to associate a capacity #A to each T-invariant algebra A
[4], generalizing the association of E [ :(E"U) to A(U). Davie showed
that closed T-invariant algebras are uniquely determined by their correspond-
ing capacities.

Davie's Theorem [4, Theorem 2.3, p. 414]. Let A0 denote the algebra
of all bounded Borel functions on C which are analytic outside some compact
set. Let A1 and A2 be T-invariant subalgebras of A0 , and suppose all func-
tions in A1 are continuous on C. Suppose also that for all z # C we can find
m, r, $0>0 with #A1

(U(z, $))�m#A2
(U(z, r$)) for 0<$<$0 . Let f # A1 .

Then f is in the uniform closure of A2 .

We note that the result also holds if A0 & Ai is a uniformly dense subset
of Ai (i=1 and, 2). This will be the case in our application of the approxima-
tion lemma below.

Lemma 4.7. Let U/C� be open and proper, and suppose bdy U is essential.
Let [Ui : i # I] be the set of connected components of U. Let a # bdy U and
r>0. Let

V=U(a, r) _ .
i # I

[U i : Ui & U(a, r){<]

K=C� "V

W=.
i # I

[U i : Ui & U(a, r)=<],

and

B=A(U)+R(K).

Then B is dense in A(W).
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Proof. By Davie's Theorem, it suffices to show that there exist m�1,
t�1, $0>0 such that

:(U(z, $)"U)�m#B(U(z, t$))

whenever z # C, 0<$<$0 .
We will show that m=4, t=2, $0=r work.
First we note

#B(U(z, $))�max[#A(U)(U(z, $)), #R(K)(U(z, $))]

=max[:(U(z, $)"U), :(U(z, $)"K)].

Fix z # C and $, with 0<$<r. There are two cases.

(i) dist(z, V)<$. Then U(z, 2$)"K contains an arc ;/V of diameter
at least $, so [5, p. 199, 203]

:(U(z, $)"W)�:(U(z, $))(=$)

�4:(U(z, 2$)"K)�4#B(U(z, 2$)).

(ii) $�dist(z, V). Then U(z, $)/K, so

:(U(z, $)"W)=:(U(z, $)"U)�#B(U(z, $))�4#B(U(z, 2$)).

So the result follows. K

Proof of Theorem 4.5. In view of Theorem 3.2, we may assume that U
has multiple components.

Let Uk be one component having bdy Uk=bdy U.
Let + # M(bdy U, R), +=A(U), and spt + % bdy U. We wish to show

that +=0.
Choose a # bdy U, r>0 such that B(a, r) & spt +=0.
Let V, K, W and B be constructed as in the statement of Lemma 4.7. We

note that Uk /V. Also each component of W is simply-connected.
The argument of Theorem 3.2 tells us that +̂=0 on U(a, r), and hence

on V, so that +=R(K). Thus +=B, hence +=A(W), by Lemma 4.7.
The facts that Uk & W=<, and that each boundary point of W is also

a boundary point of Uk , tell us that there are no inner boundary points
for W and hence no GG-points for W on bdy W. Thus, by the Gamelin�
Garnett Theorem, A(W) is Dirichlet on bdy W. But + is a real measure,
so +=0. K

Thus we have completely solved the question of when A(U) is real pervasive
except in the base when all components of U are simply-connected, and no
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component Ui of U has bdy Ui=bdy U. To deal with this, we introduce
some terminology.

Definition 4.8. We say that a point p # bdy U influences q # bdy U
(with respect to U) if for all r>0 there exists Ui , a component of U, such
that

U( p, r) & Ui {< and U(q, r) & Ui {<.

Remark 4.9. Note that the relation [( p, q) # bdy U_bdy U: p influ-
ences q] is reflexive and symmetric.

Theorem 4.10. Let U/C� be open and proper, with no inessential
boundary points. Suppose all components of U are simply-connected and no
component has bdy Ui=bdy U. Then the following statements are equivalent.

(i) Re A(U) is real pervasive on bdy U.

(ii) For every p # bdy U, and for every GG-point q for U on bdy U, p
influences q.

Lemma 4.11. Suppose U, a, r, V, K and W are as in Lemma 4.7. Suppose
that all components of W are simply-connected. Then there are no GG-points
for U on bdy W"bdy V if and only if A(W) is Dirichlet on bdy W.

Proof. To prove the ``only if '' direction, by the Gamelin�Garnett Theorem
it suffices to show that there are no GG-points for W on bdy W.

Let z be a boundary point of W.
If z # bdy W"bdy V, then there exists $>0 such that U(z, $)&W=U(z, $)&U,

so z is not a GG-point for W.
If z # bdy V, then for 0<$<r, U(z, $) & V contains an arc of diameter

$�2, hence :(U(z, $)"W)�$�8. Thus z is not a GG-point for W.
The ``if '' direction is clear from the fact that if A(W) is Dirichlet on bdy

W then there are no GG-points for W on bdy W, so neither are there any
for U. K

Proof of Theorem 4.10. An argument similar to the proof of Theorem
4.5 shows that (ii) implies (i).

To see that (i) implies (ii), suppose (ii) fails.
Pick p # bdy U, q # bdy U, r>0 such that q is a GG-point for U and

U( p, r) & Ui {< implies U(q, r) & U i=<, whenever Ui is a connected
component of U.

Let V, K, and W be constructed as in Lemma 4.7, with a replaced by p.
Then by Lemma 4.11, A(W) is not Dirichlet on bdy W, so there exists a
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real measure +, supported on bdy W, annihilating A(W). Since bdy W %
bdy U and A(U)/A(W), this shows that Re A(U) is not real pervasive
on bdy U. K

We close with some examples, and a question.

Example 4.12. Let an # R and rn>0 such that the intervals [an&rn ,
an+rn] are pairwise-disjoint and ��

n=1[an&rn , an+rn] is dense in R. Let

T=R _ .
�

n=1

B(an , rn)

U=C"T.

Then U is open and has two components, U1 and U2 . We can arrange that
the rn are so small that R has GG-points for U. For instance, 0 will be a
GG-point for U if

:
|an|<r

rn<r2, \r>0.

In that case, A(U) is not Dirichlet on bdy U, but Re A(U) is real pervasive
on bdy U, by Theorem 4.10, since all GG-points lie on R and are influenced
by each boundary point of U. Theorem 4.1 tells us that A(U) is not complex
pervasive on bdy U.

Example 4.13. If we modify Example 4.12 so that ��
n=1 [an&rn , an+rn]

has for its closure [&2, &1] _ [1, 2] and take

T=[&2, &1] _ [1, 2] _ .
�

n=1

B(an , rn)

U=C"T.

Then U is connected, so A(U) is complex pervasive on bdy U by
Theorem 3.2, but U is not simply-connected, so A(U) is not Dirichlet
on bdy U.

Example 4.14. Let T be as in Example 4.12 and let

S=T _ [iz: z # T].

Then we can arrange that U=C"S has four components and there are
GG-points for U on the positive and negative real and imaginary axes. In that
case, for each point p # bdy U there exists a GG-point q not influenced by p.
Thus A(U) is not real pervasive on bdy U.
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Question. It is possible to find an open set U # C� such that each connected
component is simply-connected, no component Ui has bdy Ui=bdy U, but
each boundary point influences all the others. We do not know whether
there is such U having GG-points, i.e. for which A(U) is not Dirichlet. Is
this possible?
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